PG AND DEPARTMENT OF PHYSICS EVEN SEMESTER TEACHING PLAN 2021-2022

A. GENERAL INFORMATION

Name of the Faculty	: Dr.R.Priscilla
Department	: Physics
Programme	: B.Sc
Programme Code	: BSP
Name of the Paper	: ALLIED PHYSICS III
Lecture Hours / Practical Hours	: 75 Hours

	Course Objectives		Course outcomes	T	eaching Methodology
•	To give a broader perspective		Understanding	٠	Class room Chalk and
	of basic physics.	•	Explain how this		Talk
•	To get a good exposure to the		information is physical	•	Power point.
	basic concepts of Physics.		understanding of these	•	e- Module
•	To enable them to apply		systems.	•	Classes through
	concepts related to Physics in	•	Apply Electrical circuits for		Practical
	their careers.		understanding the concept.		demonstration.
•	To familiarize the learner	•	A broad qualitative	•	Showing models to the
	with applications of Physics.		knowledge of Physics.		students to make them
•	To expose the under graduate	•	Perform and describe		understand.
	students to the fundamentals		physical processes.		
	of analog and digital	•	Carry out the		
	electronics.		understanding of some of		
			the physical concepts.		

Unit/	Topic to be covered	Proposed	Lecture	Practical	Domarke
Modules	Topic to be covered	date	Hrs	Hrs	Kellial KS
Unit I Content Hrs - 12, Assessment Hrs -3 Total – 15 Hrs	 Coulomb's law- Guass's theorem, its application field due to an infinite long plane, Sphere and Cylinder – Mechanical force on the surface of a charged conductor- Formation of cloud and charged particles. Capacitors- Principles of a capacitor-capacity of a capacitor capacity of Spherical and cylindrical capacitor Energy of a charged capacitor-sharing of charges and loss of energy Kirchhoff's Laws 	21.02.2022 to 12.03.2022	2 hrs 3 hrs 2 hrs 3 hrs 2 hrs 3 hrs 3 hrs	Nil	Nil
Unit II Content Hrs - 12, Assessment Hrs -3 Total – 15 Hrs	 Wheat stone's net work Carey Foster Bridge Determination of 		2 hrs	Nil	Nil

	resistance.	14.03.2022	3 hrs		
	• Circuit control and	to	2 hrs		
	Protective Devices	01.04.2022			
	Switch-its types-				
	• Fuse		2 hrs		
	• Circuit Breakers				
	Relays.		3 hrs		
	• Atom model- Vector		2hrs		
	atom model				
	 Various Quantum 		3 hrs		
	Numbers				
	 Pauli's Exclusion 		2 hrs		
** •. ***	Principle.				
Unit III	• X-Rays Continuous	04.04.2022	2 hrs		
Content Hrs - 12,	and Characteristics	to		Nil	Nil
Assessment Hrs -3	of X-ray	22.04.2022			
Total – 15 Hrs	• Bragg's law-		3 hrs		
	• Determination of		3 hrs		
	Crystal Structure by				
	Laue's Powder Photo				
	Graph Method.				
	Nucleus-Nuclear size		2 hrs		
	Nuclear Charge-Mass		3 hrs		
¥1	and Spin				
Content Una 12	 Liquid drop model 		2 hrs		
Accomment line 2	• Shell model, Nuclear	25 04 2022		Nil	Nil
Assessment Hrs -3	fission and fusion-	23.04.2022	3 hrs		
10(a) - 15 1115	Nuclear reactor	05 05 2022			
	• Betatron	05.05.2022	2 hrs		
	Bubble Chamber		3hrs		
Unit V	• P-N junction-V-I		2 hrs	Nil	Nil

Content Hrs - 12,	Characteristics of			
Assessment Hrs -3	junction diode			
Total – 15 Hrs	• Zener Diode- V-I	06.05.2022	3 hrs	
	Characteristics	to		
	 Voltage regulator 	23.05.2022	2 hrs	
	using Zener Diode.			
	• Logic Gates: AND,		3 hrs	
	OR, NOT gates-using			
	discrete			
	components-			
	• NAND and NOR		2 hrs	
	Gates as Universal			
	building blocks –			
	 Demorgan's 		3 hrs	
	theorem-			
	Verification.			
	Elementary ideas of			
	ICS, SSI, MSI, LSI and			
	VLSI.			

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee Meeting	Every Saturday

¢

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: Dr. N. Lavanya			
Department	: Physics			
Programme	: B.Sc			
Programme Code	: BSP			
Name of the Paper	: MECHANICS			
Lecture Hours / Practical Hours	: 90 Hours			

	Course Objectives	Course Objectives		Teaching		
	Course Objectives	course outcomes		Methodology		
•	An attempt is made to give a	Understand Laws of Motion and	•	Class room Chalk		
	better insight of the change	their application		and Talk		
	of position of any physical	• Learn the concept of	•	Power point.		
	object or event and their	Conservation of Energy,	•	e- Module		
	consequences.	Momentum, Angular	•	Classes through		
•	Apply Kepler's law to	 Momentum and pply them to 		Practical		
	describe the motion of	basic problems.		demonstration.		
	planets and satellite in	• Understand the analogy between	•	Showing models to		
	circular orbit,	Translational and Rotational		the students to		
•	through the study of law of	Dynamics, and application of		make them		
	Gravitation.	both motions simultaneously in		understand.		
•	Describe special relativistic	analyzing rolling with slipping.				
	effects and their effects on	• Develop the Energy of the				
	the mass and energy of a	Friction with the Compound				
	moving object.	Pendulum and				
•	Understand that the center of	• Friction Clutch.				
	gravity, center of pressure	• To understand various				
	and the atmospheric	Dynamical Situations, Notion of				
	Pressure.	Inertial Frames and Concept of				
		Galilean Invariance				

Unit/ Modules		Topic to be covered	Proposed date	Lecture Hrs	Practical Hrs	Remarks
	•	Centre of gravity of a body - Centre of gravity of a trapezoidal lamina - C.G. of a solid hemisphere		2 hrs 2 hrs		
		C.G. of a solid tetrahedron - C.G. of a solid cone.Centre of	2 hrs 2 hrs 1 hr 15.03.22 2 hrs 1 hr 2 hrs 1 hr 2 hrs 1 hr 2 hrs 1 hr 2 hrs 1 hr 1 hr 2 hrs 1 hr 1			
	•	Pressure rectangular lamina triangular lamina				
Unit V Content- 15 Hrs, Assessment -3 Hrs	•	triangular lamina immersed in a		1 hr	Nil	Nil
Total – 18 Hrs	 líq Co eq flo St eq flo Me Ex 	Iquid. Conditions of equilibrium of a		2 hrs		
		floating body Stability of equilibrium of a		2 hrs		
		floating body Metacentre Experimental		1 hr		
	•	determination of a metacentric height of a ship. The barometer -		2 hrs		
	•	Fortin's barometer Correction for a				

	barometer		1 hr		
	• Faulty barometer				
	• Variation atmospheric		1 hr		
	pressure with altitude.				
			2 hrs		
	Projectile particle		2 hrs		
	projected in any				
	direction				
	 Path of a projectile is a parabola 		2 hrs		
	• Range of a projectile on		2 hrs		
	 plane inclined to the 		1 hr		
	horizontal				
	• Maximum range on the		2 hrs		
	inclined plane				
Unit I	• Impulse of a force		2 hrs		
Content- 15 Hrs,	 Laws of impact 		1 hr		
Assessment -3 Hrs	• Direct impact between		2 hrs	Nil	Nil
Total – 18 Hrs	two smooth spheres				
	 oblique impact 		1 hr		
	between two smooth				
	spheres	16.03.2022			
	 Impact of a smooth 	to	1 hr		
	sphere on a smooth	08.04.2022			
	fixed horizontal plane				
	• Loss of KE due to direct		2 hrs		
	impact				
	Oblique impact				
	Reduced mass.				
Unit II	Centripetal		1hr		
Content- 15 Hrs,	Centrifugal forces		2 hrs	Nil	Nil
Assessment -3 Hrs	Hodograph		2 hrs		

Total – 18 Hrs	• Expression for normal		3 hrs		
	acceleration				
	Motion of a cyclist		2 hrs		
	along a curved path				
	• Motion of a railway		2 hrs		
	carriage round a	12.04.2022			
	curved track	to			
	• upsetting of a carriage	26.04.2022	1 hr		
	Motion of a carriage				
	on a banked up curve				
	• Effect of earth's				
	rotation on the value		1 hr		
	of the acceleration				
	due to gravity				
	• Variation of 'g' with		2 hrs		
	altitude, latitude and				
	• Depth.		2 hrs		
	Newton's law of		2 hrs		
	gravitation				
	• Mass and density of		1hr		
	earth				
	• Inertial and		2 hrs		
Unit III	Gravitation mass				
Contant 15 Hrs	• Determination of		1 hr		
Assessment -3 Hrs	GBoy's experiment			Nil	Nil
Total $= 18$ Hrs	Kepler's Laws of		2 hrs	1111	111
	planetary motion				
	Deduction of	27.04.2022	2 hrs		
	Newton's law of	to			
	gravitation from	07.05.2022			
	Kepler's Law				
	Gravitation - Field		1 hr		
	potential				

	Intensity of		2 hrs		
	Gravitational field				
	• gravitational potential		1 hr		
	due to a point mass				
	• Equipotential surface		1 hr		
	Gravitational potential		1 hr		
	and field due to a				
	spherical shell and				
	solid sphere				
	Escape velocity		1hr		
	Orbital velocity.		1hr		
	Moment of Inertia -		2 hrs		
	Kinetic energy and				
	angular momentum of				
	rotating body-				
	• Theorems of		2 hrs		
	perpendicular and				
	parallel axes –				
	Acceleration of a body		2 hrs		
	rolling down an				
Unit IV	inclined plane without				
Content- 15 Hrs,	slipping			NU	NU
Total 18 Hrs	• Oscillations of a small		1 hr	1111	1111
10141 - 10 1115	sphere on a large				
	concave smooth				
	surface –				
	Compound pendulum	09.05.2022	2 hrs		
	• Centre of suspension	То	2 hrs		
	and centre of	25.05.2022			
	oscillation				
	• Centre of percussion –		1 hr		
	• Minimum period of a		1 hr		
	compound pendulum				

• Kater'spendulum.	1 hr	
• Friction - Laws of	1 hr	
friction –		
• Resultant reaction -		
Angle and cone of	1 hr	
friction –		
• Equilibrium of a body	1hr	
on a rough plane		
inclined to the		
horizontal –	1hr	
• The friction clutch.		

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee	Every Saturday
Meeting	

R. On

PRINCIPAL Principal A.D.M. College For Women Autonemous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: Dr.N.Lavanya
Department	: Physics
Programme	: B.Sc
Programme Code	: BSP
Name of the Paper	: ALLIED PHYSICS III
Lecture Hours / Practical Hours	: 75 Hours

Course Objectives	Course outcomes	Teaching Methodology
To give a broader	Understanding	Class room Chalk
perspective of basic physics.	• Explain how this	and Talk
• To get a good exposure to the	information is	• Power point.
basic concepts of Physics.	physical	• e- Module
• To enable them to apply	understanding of	• Classes through
concepts related to Physics	these systems.	Practical
in their careers.	Apply Electrical	demonstration.
• To familiarize the learner	circuits for	• Showing models to
with applications of Physics.	understanding the	the students to
• To expose the under	concept.	make them
graduate students to the	A broad qualitative	understand.
fundamentals of analog and	knowledge of	
digital electronics.	Physics.	
	• Perform and describe	
	physical processes.	
	Carry out the	
	understanding of	
	some of the physical	
	concepts.	

Unit/	Topic to be covered	Proposed	Lecture	Practical	Domanka
Modules	Topic to be covered	date	Hrs	Hrs	Rellial KS
Unit I Content- 12 Hrs, Assessment -3 Hrs Total – 15 Hrs	 Coulomb's law-Guass's theorem, its application field due to an infinite long plane, Sphere and Cylinder – Mechanical force on the surface of a charged conductor- Formation of cloud and charged particles. Capacitors-Principles of a capacitor-capacity of a capacitor capacity of Spherical and cylindrical capacitor Energy of a charged capacitor-sharing of charges and loss of energy Kirchhoff's 	21.02.2022 to 12.03.2022	2 hrs 3 hrs 2 hrs 3 hrs 3 hrs 3 hrs	Nil	Nil
Content- 12 Hrs, Assessment -3 Hrs Total – 15 Hrs	Laws • Wheat stone's net work		2 hrs	Nil	Nil

	•	Carey Foster		3 hrs		
		Bridge	14.03.2022			
		Determination	to			
		of resistance.	01.04.2022			
	•	Circuit control		2 hrs		
		and Protective				
		Devices Switch-				
		its types-				
	•	Fuse		2 hrs		
	•	Circuit Breakers				
		Relays.		3 hrs		
	•	Atom model-		2hrs		
		Vector atom				
		model				
	•	Various		3 hrs		
		Quantum				
		Numbers				
	•	Pauli's		2 hrs		
		Exclusion				
Unit III		Principle.		2 hrs		
Content- 12 Hrs,	•	X-Rays	04.04.2022			
Assessment -3 Hrs		Continuous and	to		Nil	Nil
Total – 15 Hrs		Characteristics	22.04.2022	3 hrs		
		of X-ray				
	•	Bragg's law-		3 hrs		
	•	Determination				
		of Crystal				
		Structure by				
		Laue's Powder				
		Photo Graph				
		Method.				

	Nucleus-Nuclear		2 hrs		
	size		3 hrs		
	Nuclear Charge-				
	Mass and Spin				
Unit IV	Liquid drop		2 hrs		
Content- 12 Hrs,	model				
Assessment -3 Hrs	• Shell model,	25 04 2022	3 hrs	Nil	Nil
Total – 15 Hrs	Nuclear fission	23.04.2022			
	and fusion-	05 05 2022			
	Nuclear reactor	05.05.2022	2 hrs		
	• Betatron				
	• Bubble		3hrs		
	Chamber.				
	• P-N junction-V-I		2 hrs		
	Characteristics				
	of junction				
	diode				
	• Zener Diode- V-		3 hrs		
	I Characteristics				
	Voltage				
Unit V	regulator using		2 hrs		
Content- 12 Hrs,	Zener Diode.				
Assessment -3 Hrs	• Logic Gates:			Nil	Nil
Total – 15 Hrs	AND, OR, NOT	06.05.2022	3 hrs		
	gates-using	to			
	discrete	23.05.2022			
	components-		2 hrs		
	NAND and NOR		Z mrs		
	Gates as				
	Universal				
	building blocks				
	-		3 hrs		
	 Demorgan's 		5 11 5		

theorem-		
Verification.		
Elementary		
ideas of ICS, SSI,		
MSI, LSI and		
VLSI.		

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee	
Meeting	Every Saturday

¢

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: Mrs.S.Aruljothi Department of Physics
Department	: Physics
Programme	: II M.Sc.,
Programme Code	: PSP
Name of the Paper	: Advanced Physics
Lecture Hours / Practical Hours	:90 Hours

Course Objectives	Course Outcomes	Teaching
course objectives	course outcomes	Methodology
 To learn the basics and the advanced applications of physics in the fields of Astrophysics, Biomedical and wireless communication. Understanding basic principles and phenomena in the area of medical diagnostic instrumentations. Introduce communication systems for space vehicles. To introduce the concepts and techniques associated with wireless communication system. To familiarize with state of art standards used in wireless communication for the state of art standards used in wireless To familiarize with state of art standards used in wireless 	 On completion of the Course, Students should be able to do Able to use radio astronomical data to measure physical properties of astronomical targets. Identify and solve basic communication problems, analyse transmitter and receivers. Demonstrate measuring of basic medical parameters. Analyse the radio channel characteristics and the cellular principles Ability to analyse improved data services in cellular communication. 	Methodology • Class room Chalk and Talk • Power point. • e- Module • Classes through Practical demonstration. • Showing models to the students to make them understand.

Unit / Modulos	Init / Madulas Tanic to be covered		Lecture	Practical	Domarks
onit / Mouules	Topic to be covered	date	Hours	Hours	Kelliai KS
Unit I Content- 15 Hrs, Assessment -3 Hrs Total – 18 Hrs	 Astrophysics: Physical properties of stars Life cycle of a star Endproducts of stellar evolution Structure of milky way Expanding universe Future prospects. Radio telescopes Synchrotron radiation Spectrallines in RA Major discoveries in RA RA in India Hot big bang cosmology. 	21.02.202 2 to 11.03.202 2	2 hrs 1 hr 2 hrs 1 hr 1 hr	Nil	Nil
Unit II Content- 15 Hrs, Assessment -3 Hrs Total – 18 Hrs	 Overview Methodological issues in cost beneficial analysis of space programme The INSAT system Broadcasting Telecommunication Meteorology Indian remote sensing programme Geo informatics (basic 	14.3. 2022 to 01.4. 2022	2 hrs 1 hr 2 hrs 1 hr 1 hr 1 hr 2 hrs 2 hrs	Nil	Nil

	idea only)			
	• The launching	3 hrs		
	programme.			
	• Ear and hearing Aids:	2 hrs		
	Basic measurements of			
	ear function			
	Air and bone	2 hrs		
	conduction			
	Masking			
	Middle ear impedance	2 hrs		
	audiometry			
	Oto-acoustic emission	1 hr		
	• Types of hearing aids	1 hr		
	and Cochlea rim plants			
	Sensory substitution	2 hrs		
Unit III	aids			
Content 15 Hrs	Electrophysiology:	1 hr		
Assessment -3 Hrs	Source of biological		Nil	Nil
Total -18 Hrs	potentials 4.	.4. 2022		
	• Signal size and to	o 26.4. 1 hr		
	electrodes 20	022		
	• Functions	1 hr		
	• Features of ECG, EEG			
	and EMG	1 hr		
	Cardiac and blood	1 1		
	related devices:	1 nr		
	Pacemakers	1 hr		
	Electromagnetic	1 mr		
	compatibility –			
	Defibrillators -Artificial			
	heart valves –			
	Cardiopulmonary			
	bypass –Hemodialysis			

	• Cellular Radio: IMTS,		2 hr		
	AMPS control system				
	• Security and privacy		1 hr		
	• Cellular telephone		2 hrs		
	specifications and				
	operations				
	Cell site equipment		1 hr		
	• Fax and data		1 hr		
	communication using				
Content 15 Ura	cellular phones and				
Assessment 3 Hrs	CDPD			Nil	Nil
Total – 18 Hrs	• Digital cellular systems	27 4 22 to	1 hr	1111	1111
	Personal	07 5 2022			
	Communication	07.5.2022	1 hr		
	Systems (PCS):				
	• Differences between CS		1 hr		
	• PCS, IS-136 TDMA PCS,		1 hr		
	GSM, IS-95 CDMA PCS				
	• Comparison of		2 hrs		
	modulation schemes				
	Data communication		2 hrs		
	with PCS				
	Satellite orbits		1hr		
	• Satellites for		2 hrs		
	communication	09 05 202			
Unit V	• Satellites and	2	1 hr		
Content- 15 Hrs,	transponders	to			
Assessment -3 Hrs	• Signal and noise	25.05.202	1 hr	Nil	Nil
Total – 18 Hrs	calculations	2			
	• InMARST,	-	1 hr		
	MSAT system using		1 hr		
	low				
	• medium-earth orbit		1 hr		

stations.		
• Paging (one-way and		
two-ways)	1 hr	
• messaging system		
Voice paging	1 hr	
LAN topologies		
Ethernet bridges	1 hr	
• Wireless Radio LANs		
Bluetooth	1 hr	
Wireless bridges		
Connections using	1 hr	
infrared wireless	1 hr	
modems		
• Wireless packet data		
services.		
	1 hr	

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee	Every Saturday
Meeting	

¢

R. Dom C

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

TEACHERS PLAN

A. GENERALINFORMATION

Name of the Faculty	: S.Aruljothi
Department	: Physics
Programme	: B.Sc
Programme Code	: BSP
Name of the Paper	: Material Science
Lecture Hours /Practical Hours	: 90 Hours

	Course Objectives		Course Outcomes	Т	eaching
				Μ	ethodology
•	To develop knowledge in material	•	Upon completion of	•	Class room
	science and to understand the		this course the student		Chalk and Talk
	relationship between properties and		will be able to:	•	Power point.
	material characteristics.	•	Identify the properties	•	o-Modulo
•	This course provides students an		of metals with respect	•	e-mouule
	understanding of basic structure and \Box		to crystal structure and	•	Classes through
	crystal arrangement of materials, the		grain size		Practical
	phase diagrams, advantages of heat	•	Interpret the phase		demonstration.
	treatment and the method of heat		diagrams of materials	•	Showing
	treatment processes, powder metallurgy	•	Classify and		models to the
	processes.		Distinguish different		students to
•	The need and application of composite		types of cast irons,		make them
	materials.		steels and non ferrous		understand.
•	Introduce the concept of structure		alloys.		
	property relations.	•	Describe the concept		
•	Develop intuitive understanding of the		of heat treatment of		
	subject to present a wealth of real world		steels &		
	engineering examples to give students a		strengthening		
	feel of how material science is useful in		mechanisms		
	engineering practices.				

Unit /Madulas	Topic to be covered	Proposed	Lecture	Practical	l Bomorks	
Unit / Modules	Topic to be covered	date	Hours	Hours	Kennai KS	
	Crystal Structure		2hrs			
	Types of crystals					
	space lattice					
	• Basis- unit cell and lattice		1hrs			
	parameters					
	• Bravais lattices-		2hrs			
Unit l	• Lattice planes and Miller					
Content- 15 Hrs,	indices	21 02 2022	2hrs			
Assassment 3 Hrs	• Inter planar spacing in a	21.02.2022 to		Nil	Nil	
Assessment -5 ms	cubic lattice	11 03 2022	1 hr			
Total – 18 Hrs	• SC ,BCC ,FCC	11.05.2022				
	 Sodium chloride 		1 hr			
	 Diamond crystal structure 					
	• Bonding of solids Ionic		2hrs			
	bond		1hr			
	• Covalent &		2hrs			
	Metallic bond					
	 Hydrogen bond 		lhr			
	Mechanical Behavior of					
	Materials					
	 Different mechanical 		1hr			
Unit II	 properties of engineering 		2hrs			
Content- 15 Hrs,	materials					
Δ seesement -3 Hrs	 creep &Fracture 	14.3. 2022	1hr	Nil	Nil	
Assessment -5 ms	 technological properties 	to 01.4.				
Total – 18 Hrs	 factors affecting 	2022	2hrs			
	mechanical properties of					
	material		2hrs			
	• Heat treatment-					

cold and hot working-			2hrs		
	• Types of mechanical tests-		2hrs		
	 Metal forming process- 		1hr		
	Deformation of metals-				
	• Deformation of crystals		2hrs		
	polycrystalline materials.				
	Super Conducting Materials				
	 Superconductivity 		2hrs		
	• Properties-		26		
	 Meissner's effect- 		ZHTS		
	 London equations 		1hr		
	• Types of superconductors		2hrs		
Unit III	 Type I and Type II 		2hrs		
Content- 15 Hrs,	• High temperature				
Assessment 2 Has	superconductors		2hrs	Nil	Nil
Assessment -5 Hrs	• Josephson effects and its				
Total – 18 Hrs	applications	4.4. 2022	1hr		
	• •SQUIDS	to 26.4.			
	• •Applications of	2022	2hrs		
	superconductor		1hr		
	• •BCS Theory (Basic Idea.)				

	Nano Materials				
	• Types of Nano materials 1D		2hrs		
	 Properties of nanomaterial's 		1hr		
	size dependent				
Unit IV	 synthesis of nanomaterial 		1hr		
Content- 15 Hrs,	• Fullerenes		2 hrs		
Assessment - 3 Hrs	 Application of nanomaterial 		2 111 5		
	 Carbon nanotubes 		2hrs	NII	Nil
Total – 18 Hrs	 Fabrication 	27.4.22 to			
	 structure of carbon nano 	07.5.2022	1hr		
	tubes				
	• Properties of carbon		2hrs		
	nanotubes				
	 Mechanical Electrical 		2hrs		
	 Applications of CNT's. 				
			2hrs		
	Smart Materials 15hrs				
	 Metallic glass 		1hr		
	 Applications 		1hr		
	 Fiber reinforced metals 		2hrs		
	 SAW Materials 		2hrs		
Unit V	 Applications of 		1hr		
Content- 15 Hrs,	Biomaterials				
Assessment -3 Hrs	Ceramic			Nil	Nil
	Nuclear engineering		1hr		
Total – 18 Hrs	materials		1hr		
	 Nanophase materials 				
	 SMART materials 	09.05.2022	1hr		
	 Conducting polymers 	to	2hrs		
	 Optical materials 	25.05.2022	1hr		
	• Fiber optic materials		2hrs		
	Applications.				

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee	Every Saturday
Meeting	

(

R. Dome

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

TEACHERS PLAN

A. GENERAL INFORMATION

Name of the Faculty	: Ms. R.Rubashri, Department of Physics
Department	: Physics
Programme	: III B.Sc.,
Programme Code	: BSP
Name of the Paper	: Communications Physics
Lecture Hours / Practical Hours	: 90 Hours

Course Objectives			Course Outcomes		Teaching		
	course objectives		course outcomes		Methodology		
•	To promote scientific temper	•	Students will demonstrate	•	Class room Chalk		
	among students and update the		an understanding of core		and Talk		
	basic functioning of various		knowledge in Physics,	•	Power point.		
	communication systems.		including the major	•	e- Module		
•	To be highly skilled,		premises of classical	•	Classes through		
	interdisciplinary professionals		mechanics, Example and		Practical		
	who can identify and solve		Modern Physics.		demonstration.		
	engineering problems from	•	Students will demonstrate	•	Showing models to		
	unusually broad physical		written and oral		the students to		
	perspectives.		communication skills in		make them		
•	To engage vigorously in further		communicating physics-		understand.		
	studies in interdisciplinary		related				
	graduate programs and a wide	•	Students will demonstrate				
	variety of other lifelong learning		understanding of the				
	opportunities.		applications of numerical				
•	To pursue careers that		techniques for modeling				
	incorporate ethical and		physical systems for which				
	professional responsibility, as		analytical methods are				
	well as good citizenship.		inappropriate or of limited				
•	Students will demonstrate a		utility.				
	thorough understanding of the	•	Students will demonstrate a				

analytical approach to modeling	thorough understanding of	
of physical phenomena.	the analytical approach to	
	modeling of physical	
	phenomena.	
	Students will demonstrate	
	an understanding of the	
	impact of Physics and	
	Science on society.	

Unit /	Tonic to be covered	Proposed	Lecture	Practical	Remarks
Modules	Topie to be covered	date	Hours	Hours	Remarks
	Transmitter		2 hrs		
	Modulation				
	need for modulation		2 hrs		
	• types of modulation		2 hrs		
	amplitude				
	frequency				
Unit I	• phase modulation		1 hr		
Content- 15	modulation factor	21.02.2022			
Hrs,	• sideband	to	1 hr		
Assessment -3	frequencies in AM	11.03.2022		Nil	Nil
Hrs	wave		2 hrs		
Total – 18 Hrs	• limitations of				
	amplitude				
	modulation		1 hr		
	• frequency				
	modulation		1 hr		
	• block diagram of AM				
	and FM Transmitter.		1 hr		
	Receiver				

	• demodulation-AM &		1 hr		
	FM radio receivers				
	 super heterodyne 		1 hr		
	radio receiver				
	Introduction		1hr		
	• structure of optical fiber	14.3. 2022	1hr		
	• total internal reflection	to 01.4.	1hr		
	in optical fiber	2022			
	• principal and				
	propagation of light in		1hr		
Unit II	optical fiber				
Content- 15	• acceptance angle		1hr		
Hrs,	numerical aperture		2hr		
Assessment -3	• types of optical fibers		1hr	Nil	Nil
Hrs	based on material				
Total – 18 Hrs	• number of modes		1hr		
	• refractive index profile		1hr		
	• fiber optical				
	communication system		2hr		
	(block diagram)				
	• fiber optic sensors		1hr		
	Temperature sensor		1hr		
	• fiber optic endoscope		1hr		
	Basic radar system		2hrs		
Unit III	• Radar range		1 hr		
Content- 15	Antenna scanning		1 hr		
Hrs	• Pulsed radar system		1 hr		
Assessment -3	• A-Scope	4.4. 2022	1 hr	Nil	Nil
Hrs	• Plan position	to 26.4.	1 hr		
Total – 18 Hrs	indicator	2022			
	• Tracking radar		1 hr		
	• Moving target		2 hrs		

	indicator		1hr		
	• Doppler effect-MTI				
	Principle				
	• CW Doppler Radar		1hr		
	• Frequency				
	modulator CW		1hr		
	Radar.				
	Introduction		2 hr		
	history of satellites				
	• satellite		1 hr		
	communication				
	system		1 hr		
	• satellite orbits				
	classification of				
	satellites	27.4.22 to			
	• types of satellites	07.5.2022	1 hr		
Unit IV	• basic components of				
Content- 15 Hrs, Assessment -3 Hrs	satellite				
	communication			N::1	NT:1
	 constructional 		1 hr	INII	INII
	features of satellites		1 hr		
10141 - 101113	• multiple access		1 hr		
	• communication				
	package		1 hr		
	• antenna		1 hr		
	• power source		2 hrs		
	• satellite foot points		1 hr		
	• satellite,		1 hr		
	communication in		2 hrs		
	India.				
Unit V	• GSM		1hr	NT:1	NT:1
Content- 15	mobile services		2 hrs	IN 11	INII

Hrs,	• concept of cell		1 hr	
Assessment -3	system architecture			
Hrs	• radio interface		1 hr	
Total – 18 Hrs	• logical channels and	09.05.2022	1 hr	
	frame hierarchy	to	1 hr	
	 protocols 	25.05.2022	1 hr	
	• localization and		1 hr	
	calling		1 hr	
	Handover		1 hr	
	• facsimile (FAX)		1 hr	
	 application 		1 hr	
	• VSAT (very small		1 hr	
	aperture terminals)			
	• Modem		1 hr	
	• IPTV (internet			
	protocol television)			
	• Wi-Fi - 3G ,4G (Basic			
	ideas only).			

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee	Every Saturday
Meeting	

¢

R. Don C

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

TEACHERS PLAN

A. GENERAL INFORMATION

Name of the Faculty	: Ms. R.Rubashri, Department of Physics
Department	: Physics
Programme	: II B.Sc Computer Science.,
Programme Code	: BSP
Name of the Paper	: Applied Physics III
Lecture Hours / Practical Hours :	: 60 Hours

Course Objectives			Course Outcomes		Teaching	
	course objectives		course outcomes		Methodology	
•	Working of P and N type	•	This programme could	•	Class room Chalk	
	semiconductors, P-N junctions,		provide skilled in electro		and Talk	
	Forward and Reverse biased		principles.	•	Power point.	
	junctions, LEDs.	•	Helps students to acquir	•	e- Module	
•	To able to photodiode and solar cells,		conceptual knowledge of	•	Classes through	
	p-n-p, n-p-n transistors, different		various kinds of Electror		Practical	
	characteristics of CB,CE and CC		devices.		demonstration.	
	configurations, biasing for CE	•	Learned about to basic	•	Showing models to	
	amplifiers and classification of		concept of laser and fibe		the students to	
	amplifiers.		optics.		make them	
•	Operational amplifiers and its	•	Develop and analysis of		understand.	
	characterization, circuits using Op-		fabrication and Electron			
	Amp for making		measuring Instruments			
	Summing and subtracting circuits,		CRO.			
	differentiators and integrators.	•	To design the basic			
•	Working of Oscilloscope (CRO) and		operational amplifier ide			
	applications and usage of		inverting and non-invert			
	oscilloscopes for measuring voltages,		comparator.			
	currents and study of waveforms.					
•	understand the phase shifter, adder,					
	subtractor, using op-amp comparator.					

Unit / Modulos	ulas Tonista he severed		Lecture	Practical	Domarka
onit / Modules	Topic to be covered	date	Hours	Hours	Kellial KS
Unit I Content- 12 Hrs, Assessment -3 Hrs Total – 15 Hrs	 Theory of Energy bands in crystals Distinction between Conductor, Insulator and Semiconductor- Intrinsic and Extrinsic semiconductor PN Junction V-I characteristics of PN Junction diode Zener diode -Voltage regulator using diode Basic ideas of LCD, LED- Photodiode Phototransistor.FET FET characteristics FET as a switch. 	21.02.2022 to 12.03.2022	2 hrs 2 hrs 1 hr 1 hr 1 hr 2 hrs 1 hr 1 hr 1 hr 1 hr 1 hr 1 hr	Nil	Nil
Unit II Content- 12 Hrs, Assessment -3 Hrs Total – 15 Hrs	 Transistor The working of a transistor- three Configuration- Transistor Characteristics CE Configuration. Amplifiers and Oscillators Single stage CE amplifier 	14.03.2022 to 01.04.2022	2 hrs 2 hrs 1 hr 1 hr 1 hr	Nil	Nil

	• power amplifiers		2 hrs		
	Efficiency of class-B				
	Power amplifier				
	• push – pull amplifier		1 hr		
	• General theory of		1 hr		
	feedback				
	• Properties of negative				
	feedback – Criterion for		2 hrs		
	oscillations – Tuned				
	Collector				
	oscillator				
	• Astable and Bistable		2 hrs		
	Multivibrator.				
	(Content- 9 Hrs,				
	Assessment -3 Hrs) (12				
	Hrs).				
	• Lasers: Basic concepts		2hrs		
	of stimulated emission				
	Population inversion		2 hrs		
	and metastable state				
	• -Ruby laser and He –Ne	04.04.2022	2 hrs		
Unit III	laser production	to			
Content- 12 Hrs	• –applicatio F iber	22.04.2022	2 hrs		
Assessment -3 Hrs Total – 15 Hrs	optics: Introduction –				
	Optical fiber		2 hrs	-	-
	• total -Critical angle -		2 hrs		
	Principle of				
	propagation of light				
	through optical fibers				
	• Type of optical fibers -				
	Fiber optics		2 hrs		
	communication system				

	• Fiber optics sensors		1 hr		
	• Integrate circuits –		2 hrs		
	Advantage and				
	Disadvantages of Ic's -		2 hrs		
	Ic classification –Ic-	25.04.2022			
	• Fabrication of a	to	1 hr		
	Monolithic Ic -	05.05.2022	1 hr		
Unit IV	Electronics Instruments		1 hr		
Content- 12 Hrs,	• Multimeter –		2 hrs		
Assessment -3 Hrs	Multimeter as		2 hrs		
Total – 15 Hrs	• voltmeter –Ammeter				
	• ohmmeter		2 hrs		
	• Vacuum Tube				
	Voltmeter (VTVM)				
	• CRO				
	Cathode ray tube				
	deflection and			-	-
	sensitivity.				
	Basic Operational		2 hrs		
	Amplifier		2 hrs		
	Ideal characteristics		1 hr		
	Inverting and Non	06.05.2022			
	• Inverting Basic	to	1 hr		
Unit V	parameters of op-amp	23.05.2022	1 hr		
Content- 12 Hrs,	(CMRR, Input)		2 hrs		
Assessment -3 Hrs	• CMRR			Nil	Nil
Total – 15 Hrs	• Sign and Scale Charges,		1 hr		
	Phase Shifter, Adder,		1 hr		
	• Subtractor,		1 hr		
	Integrator				
	&Differentiator,				
	• OP-Amp as a				
	Comparator.				

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutor Ward Meeting	Monthly once
Mentor Mentee	Every Saturday
Meeting	

¢

R. Don C

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: Ms. G. Swetha
Department	: Physics
Programme	: M.Sc
Programme Code	: PSP
Name of the Paper	: Crystal Growth and Thin Film
Lecture Hours / Practical Hours	:90 Hours

Course Objectives			Course outcomes		Teaching		
	course objectives		course outcomes		Methodology		
•	The aim of the course is to	•	Nucleation mechanism and	•	Class room		
	provide you an extended		different kinds of nucleation.		Chalk and Talk		
	knowledge on advanced	•	Learn about important crystal	•	Power point.		
	condenced matter topic like		growth technique like	•	e- Module		
	crystal growth methods.		Bridgeman, czochralski (pulling	•	Classes through		
•	To understand and compare the		method),solution growth and		Practical		
	various crystal growth		hydrothermal methods,		demonstration.		
	techniques.		physical and chemical vapor	•	Showing		
•	To know the principles in the		transport.		models to the		
	method involved in the growth	•	To understand with various		students to		
	of crystal.		techniques involved in crystal		make them		
•	know the principles ,the		growth.		understand.		
	advantage and the	•	To determine various				
	disadvantages different thin film		theoretical parameters.				
	deposition method.	•	understand the effect of the				
•	To understanding the theories		process condition on film				
	involve in crystal growth		growth microstructural				
	nucleation process and solution,		evaluation.				
	melt and vapour growth						
	techniques.						
•	To learn the importance of						

different thin films and coatings	
for a variety industrial	
applications.	

Unit/	Tonic to be covered	Proposed	Lecture	Practical	Domarka
Modules	Topic to be covered	date	Hrs	Hrs	Kellial KS
Unit I Content- 15 Hrs, Assessment -3 Hrs Total – 18 Hrs	 Ambient phase equilibrium Super saturation Equation of ThomsonGibbs Types of nucleation Formation of critical nucleus Classical theory of nucleation Homo and heterogeneous nucleus Rate of nucleation Growth from vapor phase, solutions and melts Epitaxial growth Growth mechanism and classification Kinetics of growth of epitaxial films. 	21.2.2022 to 11.3.2022	 1 hr 1 hr 1 hr 1 hr 2 hrs 1 hr 2 hr 1 hr 	Nil	Nil
Content-	system	to 01.4.		Nil	Nil

18 Hrs	Crystal symmetry	2022	1 hrs		
	Solvents and		1 hr		
	solutions		1 hr		
	• Solubility diagram		2 hr		
	• Super solubility		2 hr		
	• Expression for super				
	saturation				
	• Miers TC diagram		1hr		
	Solution growth				
	• Low and high		1hr		
	temperatures				
	solution growth		1hr		
	• Slow cooling and				
	solvent evaporation		1hr		
	methods				
	• Constant				
	temperature bath as		2 hrs		
	a crystallizer.				
	Principle of gel		2hrs		
	technique				
	• Various types of gel		1 hr		
	• Structure and	4.4. 2022 to			
11	importance of gel	26.4. 2022	2hr		
Content 15 Une	• Methods of gel				
Assessment 3	growth and		2 hrs		
Hrs	advantages			Nil	Nil
Total – 18 Hrs	Melt technique		2 hrs		
	Czochralski growth		1hr		
	Bridgeman method		2 hr		
	• Flux growth		1 hr		
	• Hydrothermal		1 hr		
	growth		1 hrs		
	• Vapor-phase growth				

	Physical vapor		1hr		
	deposition				
	Chemical vapor		1 hr		
	deposition.				
	Vacuum evaporation		2 hrs		
	• E-beam, pulsed laser				
	and ion beam		2 hr		
	evaporations				
	• Glow discharge and	27.4.22 to	2 hr		
Unit IV	plasmas	07.5.2022			
Content- 15 Hrs,	Mechanisms and		2 hr		
Assessment -3	yield of sputtering			N7-1	N7-1
Hrs	processes			NII	N1I
Total – 18 Hrs	• DC, RF, magnetically		1 hr		
	enhanced,				
	• reactive sputtering		1 hr		
	• Spray pyrolysis		2 hrss		
	Electro deposition		2 hrs		
	• Sol-gel technique.		1 hr		
	• X-ray diffraction –		2 hrs		
	Powder and single				
	crystal				
Unit V	Fourier transform		2 hrs		
Content- 15 Hrs	infrared analysis				
Assessment -3	• Elemental	09.05.2022	2 hr		
Hrs	dispersive X-ray	to		Nil	Nil
Total – 18 Hrs	analysis	25.05.2022	2 hrs		
	Transmission and				
	scanning electron				
	microscopy		2 hrs		
	• UV-vis-NIR				
	spectrome Chemical				

etch	ing	2 hrs	
• Vick	ers micro		
hard	lness	3 hr	
• Basi	c principles and		
oper	rations of AFM		
and	STM.		

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Assignment	Unit –V (April)
	Two Mark Quiz Test - Unit I – Unit – V (May)
Seminar	Every Saturday
Quiz	
Tutorial Ward	
Meeting	

"

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: Ms. G. Swetha & Ms.R. Rubashri
Department	: Physics
Programme	: B.Sc
Programme Code	: BSP
Name of the Paper	: Classical and Quantum Physics
Lecture Hours / Practical Hours	: 90 Hours

Course Objectives	Course outcomes	Teaching Methodology
• An attempt is made to give a	• After taking this course students	Class room Chalk and
better insight of the change	will be able to appreciate the beauty	Talk
of position of any physical	of quantum mechanics. They will be	• Power point.
object or event and their	knowing all types of	• e- Module
consequences.	representations of operators and	Classes through
 Apply Kepler's law to 	ways to apply them in different	Practical
describe the motion of	problems.	demonstration.
planets and satellite in	• The most important thing students	• Showing models to
circular orbit, through the	learned form this course was how	the students to make
study of law of Gravitation.	to solve the hydrogen atom	them understand.
• Describe special relativistic	problem by using quantum	
effects and their effects on	mechanics.	
the mass and energy of a	• Describe and understand the	
moving object.	motion of a mechanical system	
• Able to perform energy	using Lagrange Hamilton	
momentum of dynamics in	formalism.	
rigid body.	• Describe and understand the	
• Understand that the center	motion of the forces in non inertial	
of gravity, center of pressure	systems.	
and the atmospheric	 Understand historical aspects of 	
Pressure.	development of quantum	
	mechanics	

Unit/	Topic to be covered	Proposed	Lecture	Practical	Domorko
Modules	Topic to be covered	date	Hrs	Hrs	Kellial KS
	• Mechanics of a particle		2 hrs		
	and system of particles				
	Conservation laws		2 hrs		
Unit I	Constraints		2 hrs		
Content- 15 Hrs,	Generalized coordinates	21.2.22 to	2 hr		
Assessment -3 Hrs	• Principle of virtual work-	11.3.22		Nil	Nil
Total – 18 Hrs	D' Alembert's principle		3 hr		
	Lagrange's equation		1 hrs		
	Hamilton's principle		2 hr		
	• Lagrange's equation of		1 hr		
	motion.				
	Conservation of energy	14.3.22 to	2 hrs		
	and angular momentum	01.4.22			
	Inverse square law		2 hrs		
Unit II	• Kepler's problem		2 hrs		
Content- 15 Hrs,	• Vitriol theorem –		2 hr		
Assessment -3 Hrs	Scattering in a central			Nil	Nil
Total – 18 Hrs	force field		3 hr		
	Artificial satellites		1 hrs		
	Geo stationary satellites		2 hr		
	• Eccentricity of orbit of		1 hr		
	satellites Escape velocity.				
	Euler's angles		2 hrs		
	• Moments and products				
Unit III	of inertia Euler's		2 hrs		
Content- 15 Hrs,	equations	4.4.22 to	2 hrs	211	
Assessment -3 Hrs	Symmetrical top	26.04.2022	2 hr	N1I	NII
1 otal – 18 Hrs	• Theory of small				
	oscillations Normal		3 hr		
	modes and frequencies		1 hrs		
			1	1	

	Linear triatomic		2 hr		
	molecule Wave equation		1 hr		
	and motion				
	Phase velocity				
	Group velocity				
	• Dispersion.				
	• Basic postulates of wave		2 hr		
	Mechanics				
	Development of				
	Schrödinger wave				
	equation	27.4.2022			
	• Time independent and	to	2 hr		
	dependent forms of	07.5.2022			
	equations		2 hr		
Unit IV	• Interpretation and				
Content- 15 Hrs,	Condition On wave		2 hr		
Assessment -3 Hrs	function			Nil	Nil
Total – 18 Hrs	• Orthogonal and				
	normalized wave		2 hr		
	function,				
	• Eigen function and eigen		1hr		
	values				
	Expectation values		2 hr		
	Ehrenfest's theorem.				
			2 hr		
	• Linear		3 hrs		
Unit V	harmonic				
Content-	oscillator		3 hr	Nil	Nil
18 Hrs					
	• Particle in a		2 hr		

box	09.05.2022		
Rectangular	to	2 hrs	
barrier	25.05.2022		
potential		2 hrs	
Rigid rotator			
• Hydrogen		2 hrs	
atom.			

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit –III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Tutorial Ward	
Meeting	Every Saturday

ć

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

E. GENERAL INFORMATION

Name of the Faculty	: Ms. G. Swetha
Department	: Physics
Programme	: M.Sc
Programme Code	: PSP
Name of the Paper	: Quantum Mechanics
Lecture Hours / Practical Hours	: 90 Hours

Course outcomes	Teaching	
course outcomes	Methodology	
• After taking this course	Class room Chalk	
Solves the time-	and Talk	
independent	• Power point.	
Scrondinger equation as	• e- Module	
an solve intermediate	Classes through	
step to solve the time	Practical	
dependent Scrondinger	demonstration.	
equation.	• Showing models to	
• Identifies correctly the	the students to	
mathematical space that	make them	
contains all possible	understand.	
states of a physical		
system, using Dirac 's		
equation.		
• Build a Hilbert space		
based on a complete set		
commuting observables.		
• Relativistic Quantum		
mechanics		
understanding the Klein		
Gordon equation for a		
	 Course outcomes After taking this course Solves the time- independent Scrondinger equation as an solve intermediate step to solve the time dependent Scrondinger equation. Identifies correctly the mathematical space that contains all possible states of a physical system, using Dirac 's equation. Build a Hilbert space based on a complete set commuting observables. Relativistic Quantum mechanics understanding the Klein Gordon equation for a 	

free particle and Dirac	
equation for a free	
particle and Dirac	
matrices.	
Compute the energy	
levels and evaluation the	
quantum simple	
harmonic oscillator.	

Unit/	Topic to be governed	Proposed	Lecture	Practical	Domoniza
Modules	Topic to be covered	date	Hrs	Hrs	Rellial KS
Unit I	• Mechanics of a		2 hrs		
Content- 15 Hrs,	particle and system				
Assessment -3 Hrs	of particles				
Total – 18 Hrs	• Conservation laws		2 hrs		
	Constraints	21.2.2022	2 hrs		
	Generalized	to	2 hr		
	coordinates	11.3.2022			Assessment
	• Principle of virtual		1hr		-3 Hrs
	work-D' Alembert's			-	
	principle				
	• Lagrange's		2 hrs		
	equation				
	• Hamilton's		2 hr		
	principle				
	• Lagrange's		2 hr		
	equation of motion.				
Unit II	• Linear harmonic	14.3. 2022	3 hr		
Content- 15 Hrs,	oscillator: Solving	to 01.4.			
Assessment -3 Hrs	the one	2022			
Total – 18 Hrs	• -dimensional		3 hr		

	Schrödinger equation				
	and abstract				
	operator method			-	
	• Particle in a box		3 hr		
	• Rectangular barrier		2 hr		Assessment
	potential				-3 Hrs
	• Rigid rotator		2hr		
	• Hydrogen atom.		2 hr		
Unit II	• TIME-		2hrs		
Content- 15 Hrs,	INDEPENDENT				
Assessment -3 Hrs	PERTURBATION				
Total – 18 Hrs	THEORY:	4.4. 2022 to			
	 Non-degenerate 	26.4. 2022	1 hr		
	(first-order) and				
	degenerate				
	perturbation				
	theories			-	Assessment
	 Stark effect 		2hr		-3 Hrs
	• WKB		2 hrs		
	approximation and				
	its application to				
	tunneling problem				
	• Quantization rules.		2 hrs		
	• TIME-DEPENDENT		2 hrs		
	PERTURBATION				
	THEORY:				
	• Constant and		1 hr		
	harmonic				
	perturbations				
	• Transition		3 hrs		
	probability				

	• Sudden		1 hrs		
	approximation.				
Unit III	• SCATTERING		2 hrs		
Content- 15 Hrs,	THEORY:				
Assessment -3 Hrs	Scattering			-	Assessment
Total – 18 Hrs	amplitude and				-3 Hrs
	cross-section	27.4.22 to			
	• Green's function	07.5.2022	2 hr		
	approach				
	• Born		2 hr		
	approximation and				
	its application to				
	square-well and				
	screened				
	• Coulomb potentials.		2 hrs		
	• ANGULAR		2 hrs		
	MOMENTUM:				
	Components of		2 hrs		
	orbital angular				
	momentum				
	• Properties of L and				
	L2		1 hr		
	• Eigen pairs of				
	L2andLz		2 hrs		
	• Spin angular				
	momentum.				
Unit IV	• KleinGordon		3 hrs		
Content- 15 Hrs,	equation for a free				
Assessment -3 Hrs	particle and its				
Total – 18 Hrs	solution				
	• Dirac equation for a		2 hrs		
	free particle and	09.05.2022			
	Dirac matrices	to			

• Charge and current	25.05.2022	2 hr	-	-
densities				
• Plane wave		2 hrs		
solution				
• Negative energy		2 hrs		
states				
 Zitterbewegung 				
Spin of a Dirac		2 hrs		
particle				
• Spin-orbit coupling.		2 hr		

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I - Unit-III (April)
	CIA / Model Examination – Unit I – Unit V (May)
Assignment	Assignment I –Unit –I and Unit –II (February))
	Assignment II – Unit – III and Unit – IV (April)
Seminar	Unit –V (April)
Quiz	Two Mark Quiz Test - Unit I - Unit - V (May)
Tutorial Ward	Every Saturday
Meeting	

ć

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.